
ELEMENTS OF UNIVERSAL ALGEBRA AND MODAL COMPANIONS OF

INTERMEDIATE LOGICS

1. Varieties and logics

1.1. Varieties. For any class K of (universal) algebras, let H(K), S(K), and P(K), denote the
classes of homomorphic images of algebras in K, subalgebras of algebras in K and products of
algebras in K, respectively.

Definition 1.1. A class K of algebras is called a variety if S(K) ⊆ K, P(K) ⊆ K, and H(K) ⊆ K.

Theorem 1.2 (Tarski). A class of algebras K is a variety iff HSP(K) = K.

We say that an equation ϕ(x1, . . . , xn) ≈ ψ(y1, . . . , ym) holds or is valid on an algebra A and
write A |= ϕ ≈ ψ if for every a1, . . . , an, b1, . . . , bm ∈ A we have ϕ(a1, . . . , an) = ψ(b1, . . . , bm).

Theorem 1.3 (Birkhoff). A class of algebras V is a variety iff V is equationally definable. That
is, there is a set of equations Σ such that for each ϕ ≈ ψ in Σ and for each algebra A we have

A ∈ V iff A |= ϕ ≈ ψ.

Definition 1.4. We say that a variety V is generated by a class K if V = HSP(K).

If for each A ∈ K we have A |= ϕ ≈ ψ, we will write K |= ϕ ≈ ψ. It is a corollary of (the proof)
of Birkhoff’s theorem that a class K generates a variety V iff for each equation ϕ ≈ ψ we have

K |= ϕ ≈ ψ iff V |= ϕ ≈ ψ

Exercise 1.5. Show that K generates V iff K ⊆ V and for any equation ϕ ≈ ψ, we have that
V 6|= ϕ ≈ ψ implies K 6|= ϕ ≈ ψ.

If a variety V is generated by a class K we write Var(K) = V.

Lemma 1.6 (Jónsson’s Lemma). Let V be a congruence distributive variety1 such that V = Var(K).
Then V = PHSPU(K), where PU stands for ultraproducts.

1.2. Subdirectly irreducible algebras. In this section we discuss subdirectly irreducible alge-
bras and the second variety theorem of Birkhoff.

Definition 1.7. An algebra A is a subdirect product of an indexed family {Ai}i ∈ I of algebras if

(1) A is a subalgebra of the product
∏
i∈I Ai

(2) πi(A) = Ai, where πi :
∏
i∈I Ai → Ai is the i-th projection.

An embedding α : A→
∏
i∈I Ai is subdirect if α(A) is a subdirect product of {Ai}i ∈ I.

.

Definition 1.8. An algebra A is subdirectly irreducible if for every subdirect embedding

α : A→
∏
i∈I

Ai

there is an i ∈ I such that
πi ◦ α : A→ Ai

is an isomorphism.

1This means that for each A ∈ V Con(A) is distributive.

1
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Theorem 1.9. An algebra A is subdirectly irreducible iff A is trivial or there exists a least non-
diagonal congruence of A, i.e., Con(A) \ {∆} has a least congruence.

Proof. For the proof consult Theorem 8.4 in the Universal Algebra book. �

For each variety V let VSI denote the class of all subdirectly irreducible algebras of V.

Theorem 1.10 (Birkhoff). Every variety V is generated by VSI.

Corollary 1.11.

(1) A Boolean algebra B is subdirectly irreducible iff there is a least non-unital filter of B.
(2) A Heyting algebra H is subdirectly irreducible iff there is a least non-unital filter of H.

Proof. Exercise. �

Corollary 1.12.

(1) A Boolean algebra B is subdirectly irreducible iff in its dual Stone space XB there is a
greatest closed set C 6= XB.

(2) A distributive lattice D is subdirectly irreducible iff in its dual Priestley space XD there is
a greatest closed set C 6= XD.

(3) A Heyting algebra B is subdirectly irreducible iff in its dual Esakia space XH there is a
greatest closed upset C 6= XH .

Proof. Exercise. �

Corollary 1.13.

(1) A Boolean algebra B is subdirectly irreducible iff B is isomorphic to the two element Boolean
algebra 2 iff XB is a singleton set

(2) A distributive lattice D is subdirectly irreducible iff D is isomorphic to the two element
Boolean algebra 2 iff XD is a singleton set

(3) A Heyting algebra H is subdirectly irreducible iff H has the second greatest element iff XH

is strongly rooted.

Proof. Exercise. �

Corollary 1.14.

(1) BA = Var(2).
(2) DL = Var(2).
(3) HA = Var({H : H has a second greatest element}).

Note that in (1) and (2) the signature is different. Boolean algebras have implication (negation)
in their signature. So bounded and distributive lattices on the one hand and Boolean and Heyting
algebras on the other have a different signature.

1.3. Lattices of varieties and extensions of logics. A superintuionistic logic L is a set of for-
mulas containing intuitonistic propositional calculus IPC and closed under the rules of substitution
and Modus Ponens. An intermediate logic is a superintuionistic logic L such that IPC ⊆ L ⊆ CPC.

Theorem 1.15. Every consistent superintuionistic logic is an intermediate logic.

Let Ext(L) denote the set of extensions of an intermediate logic L, and let Λ(V) denote the set
subvarieties of a variety of Heyting algebras V.

Theorem 1.16.

(1) (Ext(L),⊆) forms a lattice.
(2) (Λ(V),⊆) forms a lattice.

Proof. Exercise. �

We will denote the lattices (Ext(L),⊆) and (Λ(V),⊆), by Ext(L) and Λ(V), respectively.
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Theorem 1.17.

(1) Every superintuionistic logic is sound and complete wrt a variety of Heyting algebras.
(2) Ext(IPC) and Λ(HA) are dually isomorphic (that is, the lattice (Ext(IPC),⊆) is isomorphic

to (Λ(HA),⊇)).

Proof. (Sketch) Each formula ϕ in the language of IPC corresponds to an equation ϕ ≈ 1 in the
theory of Heyting algebras. Conversely, each equation ϕ ≈ ψ can be rewritten as ϕ↔ ψ ≈ 1, which
corresponds to the formula ϕ↔ ψ. This yields a one-to-one correspondence between superintuition-
istic logics and equational theories of Heyting algebras. By the Birkhoff theorem (Theorem 1.3),
equational theories correspond to varieties. Thus, superintuitionistic logics correspond to varieties
of Heyting algebras, while intermediate logics to non-trivial varieties of Heyting algebras. (Exercise:
check the remaining details).

�

2. Modal companions of intermediate logics

2.1. Closure algebras and their duality.

Definition 2.1. An S4-algebra (alternatively, a closure algebra or an interior algebra) is a pair
(B,�) where B is a Boolean algebra and � : B → B a modal operator such that for each a, b ∈ B
we have

(1) �1 = 1,
(2) �(a ∧ b) = �a ∧�b,
(3) �a ≤ ��a,
(4) �a ≤ a.

If we let ♦a = ¬�¬a, then the S4-axioms can be rewritten as:

(1) ♦0 = 0,
(2) ♦(a ∨ b) = ♦a ∨ ♦b,
(3) ♦♦a ≤ ♦a,
(4) a ≤ ♦a.

Let CA denote the variety of all S4-algebras (e.g., closure algebras, justifying the notation CA).

Theorem 2.2.

(1) Every (normal2) extension of S4 is sound and complete wrt a variety of S4-algebras.
(2) The lattice NExt(S4) of normal extensions of S4 is dually isomorphic to the lattice Λ(CA)

of subvarieties of S4-algebras.

Proof. Follows from Theorem 1.3. The only extra fact to note is that the Necessitation rule is
equivalent to the axiom �1 = 1. �

Definition 2.3 (S4-spaces). A pair (X,R) is called an S4-space or an Esakia quasi-order if X is
a Stone space and R ⊆ X2 a quasi-order (reflexive and transitive relation) such that:

(1) R[x] = {y ∈ X : xRy} is a closed set.
(2) For each U ∈ Clop(X) we have that ♦R(U) ∈ Clop(U),

where

♦R(U) = {x ∈ X : R[x] ∩ U 6= ∅}.

2Normal extensions are the extensions closed under the Necessitation rule ϕ/�ϕ, which corresponds to the axiom
�1 = 1.
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Let
�R(U) = {x ∈ X : R[x] ⊆ U}.

Then for each U ⊆ X we have �R(U) = X \ ♦R(X \ U) (Exercise: verify this). Note that every
Esakia space is an S4-space (Exercise: verify this).

Lemma 2.4. For each S4-space (X,R) the algebra (Clop(X),�R) (alt. (Clop(X),♦R)) is an S4-
algebra.

Proof. Exercise. �

Theorem 2.5 (Representation of S4-algebras). Every S4-algebra (B,�) is isomorphic to the algebra
(Clop(X),�R) for some S4-space (X,R).

Proof. (Sketch) Let X be the Stone dual of B (i.e., the space of all ultrafilters of B) we define R
on X by

xRy iff �a ∈ x ⇒ a ∈ y, for any a ∈ B,
alternatively we can define

xRy iff b ∈ y ⇒ ♦b ∈ x, for any b ∈ B.

Then (B,�) is isomorphic to the algebra (Clop(X),�R) (Exercise: verify this). �

Exercise 2.6. Formulate a duality theorem for the category of S4-algebras and the category of
S4-spaces. How do you define these categories?

2.2. The Gödel translation and skeletons. We consider the following translation from the
propositional language to the modal language.

Definition 2.7 (The Gödel Translation).

(1) (⊥)∗ = ⊥,
(2) (p)∗ = �p, where p ∈ Prop,
(3) (ϕ ∧ ψ)∗ = ϕ∗ ∧ ψ∗,
(4) (ϕ ∨ ψ)∗ = ϕ∗ ∨ ψ∗,
(5) (ϕ→ ψ)∗ = �(ϕ∗ → ψ∗).

Let B = (B,�) be an S4-algebra. Let ρ(B) = {�a : a ∈ B}. It is easy to see that ρ(B) = {a ∈ B :
�a = a}. (Exercise: verify this.) Moreover, ρ(B) forms a Heyting algebra where 0, 1,∧ρ(B),∨ρ(B)
are the same operations as on B and for a, b ∈ ρ(B), the implication →ρ(B) is defined by

a→ρ(B) b = �(a→B b).

Lemma 2.8. For each S4-algebra B = (B,�), the algebra ρ(B) is a Heyting algebra.

Proof. Exercise. �

As mentioned earlier when we write A |= ϕ we mean that A |= ϕ ≈ 1.

Lemma 2.9 (Key lemma). Let B be an S4-algebra, and ϕ a propositional formula. then

ρ(B) |= ϕ iff B |= ϕ∗.

Proof. Exercise. �

Let G = (X,R) be a quasi-ordered (reflexive and transitive) set. A cluster is an equivalence
class of the relation:

x ∼ y if (xRy and yRx).

We say that a poset (reflexive, transitive, anti-symmetric) F is the skeleton of G if by identifying
all the clusters in G we obtain F.
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Example 2.10. It is easy to see that the two quasi-ordered sets drawn below

Have the same skeleton drawn below

Thus we can think of a quasi-order as a poset of clusters.

Theorem 2.11. Let B = (B,�) be an S4-algebra and (X,R) its dual S4-space, then the dual Esakia
space of ρ(B) is the skeleton of (X,R).

Proof. Exercise. It might be easier to verify this claim for a finite B. �

Corollary 2.12. For every Esakia space (X,R) (i.e., when R is reflexive, transitive and anti-
symmetric). We have ρ((Clop(X),�R)) = ClopUp(X).

Theorem 2.13 (Gödel-McKinsey-Tarski). For each formula ϕ in the propositional language we
have

IPC ` ϕ iff S4 ` ϕ∗.

Proof. Suppose S4 6` ϕ∗. By Theorem 2.2, there exists an S4-algebra B such that B 6|= ϕ∗. Then,
by the Key Lemma ρ(B) 6|= ϕ. So by Theorem 1.17, IPC 6` ϕ.

Conversely, suppose IPC 6` ϕ. By Theorem 1.17, there is a Heyting algebra A such that A 6|= ϕ.
By the Esakia duality A is isomorphic to ClopUp(X) for some Esakia space X. By Corollary 2.12,
there exists an S4-algebra B such that ρ(B) = A. Therefore, by the Key Lemma again we have
that B 6|= ϕ∗ and by Theorem 2.2, S4 6` ϕ∗.

�

2.3. Modal companions. We will now attempt to lift the correspondence between IPC and S4
to the extension of IPC and S4.

Definition 2.14. A modal logic M ⊇ S4 is a modal companion of an intermediate logic L ⊇ IPC
if for any propositional formula ϕ we have

L ` ϕ iff M ` ϕ∗.

Example 2.15. In case you are familiar with the logics below.

(1) S4 is a modal companion of IPC.
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(2) S5 is a modal companion of CPC.

(3) S4.2 is a modal companion of KC.

(4) S4.3 is a modal companion of LC.

Recall that

• S4.2 = S4 + ♦�p→ �♦p is the logic of directed quasi-orders.
• S4.3 = S4 + �(�p→ �q) ∨�(�q → �p) is the logic of linear quasi-orders.

If M is the modal companion of L we will denote L by ρ(M).

Lemma 2.16. For M ⊇ S4 we have ρ(M) = {ϕ : M ` ϕ∗}.

Proof. Exercise. �

Therefore, we can think of ρ as a map ρ : NExt(S4) → Ext(IPC). For each logic L ⊇ IPC we
denote by VL the corresponding variety of Heyting algebras. That is, VL = {A ∈ HA : A |= L} and
for each M ⊇ S4 we let VM = {B ∈ CA : B |= M}.

Theorem 2.17. For each M ⊇ S4 we have that Vρ(M) = Var({ρ(B) : B ∈ VM}).

Proof. For each B ∈ VM , by the Key Lemma we have that ρ(B) ∈ Vρ(M). So {ρ(B) : B ∈ VM} ⊆
Vρ(M). Now assume that Vρ(M) 6|= ϕ. Then by Theorem 1.17, ρ(M) 6` ϕ. So, as M is a modal
companion of ρ(M) we have M 6` ϕ∗. Thus, by Theorem 2.2, there is an algebra B ∈ VM such
that B 6|= ϕ∗. But then by the Key Lemma, ρ(B) 6|= ϕ. Therefore, we found and algebra in
{ρ(B) : B ∈ VM} which refutes ϕ. By Exercise 1.5 this means that {ρ(B) : B ∈ VM} generates
Vρ(M). �

We now define τ, σ : Ext(IPC)→ NExt(S4) by

τ(L) = S4 + {ϕ∗ : ϕ ∈ L}
and

σ(L) = Grz + {ϕ∗ : ϕ ∈ L}
where

Grz = S4 + (�(�(p→ �p)→ p)→ p)).

Theorem 2.18. For each L ⊇ IPC:

(1) τ(L) is a modal companion of L,
(2) σ(L) is a modal companion of L.

Proof. (1) By Lemma 2.16, ρ(τ(L)) = {ϕ : τ(L) ` ϕ∗}. It is easy to see that L ⊆ ρ(τ(L)).
Conversely, suppose L 6` ϕ. Then there is A ∈ VL such that A 6|= ϕ. Then for each B such that
ρ(B) = A, by the Key Lemma we have B |= τ(L) and B 6|= ϕ∗. (How do we know that at least one
such B exists?) By Theorem 2.2, τ(L) 6` ϕ∗. Therefore, ϕ /∈ ρ(τ(L)).

(2) is similar to (1) but uses some facts about Grz so we skip it. �

Corollary 2.19.

(1) Vτ(L) = Var({B ∈ CA : ρ(B) ∈ VL}).
(2) Vσ(L) = Var({(Clop(X),�R) : ClopUp(X) ∈ VL}).

Proof. (1) Exercise. The proof of (2) requires some facts about Grz. �

Theorem 2.20. For each intermediate logic L we have ρ−1(L) = [τ(L), σ(L)]. That is, if ρ(M) =
L, then τ(L) ⊆M ⊆ σ(L).
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Proof. (1) Let M be such that ρ(M) = L. Then by Theorem 2.17, Vρ(M) = Var({ρ(B) : B ∈ VM}).
Thus, {ρ(B) : B ∈ VM} ⊆ VL. Therefore, VM ⊆ {B ∈ CA : ρ(B) ∈ VL}. But then Var(VM ) =
VM ⊆ Var({B ∈ CA : ρ(B) ∈ VL}) = Vτ(L). Thus, VM ⊆ Vτ(L) and by Theorem 2.2, we have that
τ(L) ⊆M .

(2) is a bit more tricky and we will skip it for now.
�

Example 2.21. Recall that CPC = Log(F1), where

F1

Which modal logics are modal companions of CPC?

G1 G2 G3

· · ·

Log(G1) ) Log(G2) ) Log(G3) ) · · · ) S5

Exercise 2.22. Only for those who are familiar with modal logic. Verify these inclusions. Find
formulas showing that the inclusions are strict.

Log(G1) ) Log(G2) ) Log(G3) ) · · · ) S5

Example 2.23. We see that Log(G1) is the greatest modal companion of CPC and S5 is the least
one. For the intermediate logic of the two-chain we have modal companions given by the following
frames.

· · ·

Exercise 2.24. Do these modal companions form a chain?

Theorem 2.25.

(1) τ(IPC) = S4 and σ(IPC) = Grz.
(2) τ(CPC) = S5 and σ(CPC) = Log(G1) = S5 ∩Grz.
(3) τ(KC) = S4.2 and σ(KC) = Grz.2
(4) τ(LC) = S4.3 and σ(LC) = Grz.3

We finish by mentioning the classical theorem about modal companions. Let NExt(Grz) denote
the lattice of normal extensions of Grz.

Theorem 2.26.

(1) τ, σ : Ext(IPC)→ NExt(S4) are lattice homomorphisms.
(2) τ : Ext(IPC) → NExt(S4) is an embedding of the lattice of intermediate logics into the

lattice of normal extensions of S4.
(3) (Blok-Esakia) σ : Ext(IPC)→ NExt(Grz) is an isomorphism from the lattice of intermedi-

ate logics onto the lattice of normal extensions of Grz.
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We can picture the connection between intermediate logics and normal extensions of S4 by the
following diagram.

Log(G1)

S5

σ(L)

τ(L) ..
.

Grz

S4

..

.

CPC

IPC

L


